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In the paper [l] the problem of a half-disk as applied to the transverse 
bending of a plate with mixed boundary conditions was considered; by intro- 
ducing unknown additional constraints on the plate the problem was reduced 
to a singular integral equation of an unusual type. Herein a different 
method is described for solving stress-analysis problems in a half-disk, 
making it possible to reduce their solution directly to a system of linear 
algebraic equations, 

1. We will carry out the proposed method for the case of an elastic half- 
disk pressed in a state of plane strain (or plane stress) against an abso- 
lutely rigid shape with a rectilinear base. It is assumed that the contact 
of the elastic body with the rigid punch occurs along the diameter of the 
circle, while the external forces acting on the body (and, of course, keeping 
it in a state of equilibrium), are distributed around.the circumference of 
the semicircle according to a given law. 

We take the radius of the semicircle o be unity and locate the elastic 
body and the punch in the plane z = x + ty such that the elastic medium 
occupies the lower half of the circle with center at the origin. We will 
denote the curved portion of the boundary of the body by yI and the straight 
segment by y. . Furthermore, we let .Y and S+ be the lower and upper half- 
disks, respectively, v2 the upper semicircumference, and y the total cir- 
cumf erence Y =Yz”Ya * We will use the notation of Muskhelishvill [2] for 
the elastic constants and the elements of the displacement and stress fields. 

Then, under the conditions that there is no slip or normal displacement 
on the line of contact of the bodies (*), the elastostatics problem for the 
half-disk reduces to the search for functions C(Z), $(z), holomorphic in 
S-, which satisfy the boundary conditions 

9 (I) + TG+-i-So = f (0 on TX (1.9 

q(tj--m--(t))=0 onTO (1.2) 

where r(t) is a given function of the point t on yL In other words, 
we must solve the fundamental mixed boundary value problem of elasticity 

“) The proposed method is in principle also applicable to other cases, pro- 
vided that the coefficient of friction maintains a constant value along the 
line of contact. 
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theory for a half-disk. 

2. We determine the function cp(~) in the upper half-disk S+, setting 

xcp (4 = 6' (4 4-G (4 (for 2 ins+) (7(z) =G) (24, 

If , Is replaced by r In (2.1) (noting that # belongs to S-) and 
both sides of the equality ard converted to their complex con 
the function $(a) may be determined through the function 

ates, then 
, which Is 

holomorphlc both In S- and S+, In the following manner: 

% (4 = G(z) - 4 (4 for 2 ins- (2.2) 

It Is easy to verify that the equality (1.2) on the boundary Is the con- 
dition for analytic continuation of the function cp( ) through the cut 

on the basis of (2.2), the problem (1.1),(1.2f reduces to a search 
yo. 

Hence, 
for a single function cp(,), which Is holomorphlc In the unit circle, and 
satisfies the follo@ig condition on the lower semlcircumference 

-7 
'p (t) + Xcp (3 + 0 - 0 cp 0) = f (4 0 on rl) (2.3) 

We extend the equality (2.3) onto the upper semlclrcumference by replacing 
t In It by F to obtain 

cp G) + x cp 0) - 0 - 71 G' 6) = f (4 0 on Tz) (2.4) 

The preceding equality may be rewritten In the form 
-- 

cp (t) + xcp ti + (t - Q q'(t) = f (6 + (x - 1) Mt) - WI + 0 - 4 k&f(t) f?(t)1 

and It l's combined with (2.3) Into the single boundary condition 

cp 0) + xcp G) f 0 --t)fi) = g (t) $ D (t) on r (2.5) 

where 
g 0) = f 0) on +fl, g (4 = f 74 on Tz (2.6) 

@ (t) = 0 on 71, Q((t)=(1C-l) [cP(t)-~(P(t)l~(t-~tjI’pl(t_t((t)l onya 

In solving the boundary-value problem (2.5): the usual power-series method 
may now be applied. In the unit circle we put 

cp (4 = 5 %Zk, cp' (z)= $ kakzk-l (2.7) 
k=O k=l 

Using the corresponding Fourier series expansions, we have 

g(t) = ; Aktk, 
kc-co 

0 (1) = 2 A, tk (t = P) (2.8) 
k=-_m 

The quantities Al, are known. 
function i(t) , however, 

The Fourier coefficients hr of the unknown 
are expressed by Formulas 

x . 

A,= &’ 
5 

{(x - 1) lcp(t) - cp (1)l + (t -7) [cp’ (t) +6’ @)I} t-+ldt (2.9) 
0 

For functions to be determined we shall assume conditions which are ordi- 
narily specified In the formulation of similar nonregular problems. These 
conditions are dictated mostly by physical considerations and are sufficient 
for confirming the uniqueness of the solution within the scope of ordinary 
analysis. We shall assume that the displacement field Is continuous In the 
closed region, and that the stress components are continuous up to the bound- 
aries, with the exception of a=*1 at which 
ties of order less than unity (cf., foi example, P 

olnts we allow singularl- 
33, Sections 113-115). 

Under these conditions we can assert that the derivatives (P'(E) and Q"(Z) 
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are continuous In any part of the closed region which does not contain the 
points .2 - f 1 , and that near these points the following estimates are 
valid: 

lf?‘(~)t<CI~+~I-a (0 < a < 1, C = const) 

The quantity In the braces under the integral 1s formed on the basis of 
the expansion (2.7). We obtain (2.10) 

(x--1) Iv r;i^-- CF (01 + (1 - ;1, r$-a-+ ‘pi (41 = f Q2, Ia; xl (8 - t-y + al(t - t-y 

(n = f 2, t 3, . . .I (2.14) 

#here 
k=l 

(_ l)k+n - 1 

k__-n -I------ 
k= 1,2, ~ ** 

k+% n = 0, * 1, + 2,... 

The comma on the summation sign indicates that the value k = InI is omit- 
ted In the summation. 

We form the left side of the equality (2.5) with the help of the 
(2.7), obtaining -- 

'p 0) +x9, G) + 0 - t) a?' @) = 

k=l k=l 
The series (2.15) and (2.8) are now introduced Into the boundary 

tlons (2.5). Equating the coefficients of tn (n = 0, 1, 2,...) We 
in consecutive order , using (2.12) to (2.14) 

(1 +x) a&3$- 2ez = A,$- s a,,Q b;Xl 
i;=: 

01-t $uI = 24, + + 52, [a; xl + $j qil 9, [a;x] 
k=2 

series 

(2.15) 

condl- 
obtain 

(2.16) 

The Fourier coefficients of the function g(6) are connected by 
A,= A-, (n = 1, a...), as 1s clear from the deflnitlon (2.6) of 

For this reason equating coefficients of ne atlve powers of t in (2.5) 
does not yield new equations (different from L6)). 

The lnfinlte system of linear equations (2.16) Is therefore a complete 
system of equations for determining the unknown coefficients of the expan- 
slon (2.7). After the solution a, (a = 0, 1, . ..) of this system is found, 
the function m(e) will give the solution of the problem, provided the cor- 
respondlng series are uniformly convergent. 

Having found T(E) In the circle, we obtain the function r(e) from(2.2), 
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after which all of the stresses and displacements may be found In the usual 
manner. In particular, for the stress J'. defined by the Kolosov-Muskhell- 
shvlli formula 

Y, = Reicp'(4 +cp'+ ZTJ-+ 9-O) 

we have from (2.2) _P 
Yv = Re {cp’ (z) + xtp’ + (z - z) cp” (4) 

On the cut y0 this expression takes the form 

YV = Re (0 (4 i_?$' (z) 1 = Re g (1 +x) kakzkF1 (- 1 < x < 1) (2.17) 
k=l 

Introducing In (2.16) the new unknowns b, defined by the equalities 
b,= Clot br= ko,, (k = 1, 2, . ..) and writing the system of equations in ex- 
panded form, we obtain 

k=l 
2k _ 1 b2k-.1 f- ‘2k+l -&k-l I -t “I, 

I-J-% 
T - L+1 

4k X--l 
22 &m-l = 2n-1 + i? fi 4k2 - (2~2 - i)2 [ - 2k b21i + 

k=l 

+ &k+z - &k 
1 

+ 2A2~-, 

i+x - _& _--L 4 
2n bZIl = b271 an+2 + ni 4n2 _ 1 + 

+ $2 (2k _?i)lf_ 4n2 

%--l 
2k _ 1 b2ke1 + ‘Sk+1 - - &I I + 2A,n 

k=l 

(n = 1, 2, . . .) (2.18) 

Here and In the following, the first term 5, on the right-hand side of 
the second equality for n = 1 Is to be omitted. Not dwelllrrg on the lnves- 
tlgatlon of the system of equations (2.18), we limit ourselves to one hint 
regarding Its approximate solution. For the approximate solution we use the 
truncated system of linear equations 

(i+x)b,=-&+-$i -+5 2k _ 1 2k _ 1 bzk-l + %k+l - i; zk-1 1 + An 
k=l 

I+% 
N 

2n _ 1 ban-1 = 52n-1 - b2nt1 + ; 2 &2 _ 
Ii=1 

(“z”n - i)2 

%-I 
2k b,?‘ + 

+$&+2-&J +2f&-, 

x [ &+’ &_, + &k+l - &k-l ] -t- 2A, (n = 1, 2, . . .) N) (2.19) 

Moreover, we set 

b 
m+2 -bb,=O for m = 2N - 1, 2N, . . . (2.2G) 

Then considering Equations (2.19) and (2.20) together, we have a system 
of 2N + 1 linear equations In the first 2N + 1 unknowns b,, bl,... ba,, 
We will take the solution of this system to be an approximate solution of 
the Infinite system (2.18). 
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Note. The function g(t) defined by the equality (2.6) will not be 
a regular function on the circumference of the disk even for the simplest 
loads. In the case of a uniform normal pressure on v,, for example, the 
derivatives of O(t) will have dlscontlnulties of the first order at the 
point 8 t =*l. Consequently, the Fourier series for the function B(t) 
will as a rule converge slowly, hence in order to obtain a satisfactory 
numerical solution it would be necessary to retain a large number of equa- 
tions in the truncated system (2.19). 

On t;e other stand, in all cases of practical interest, the function (t) 
may be smoothed beforehand by considering on yz not the equality (2.47, 
but the equality obtained from it by taking the complex conjugate. Then a 
smooth function p(t) will be obtained but in return the infinite system 
of equations obtained in place of (2.161 will have a more complicated struc- 
ture . Such a modification of the boundary conditions is clearly equivalent 
to a certain transformation of the system (2.16). Such a transformation may 
sometimes prove to be feasible. 

The boundary value problem (2.5) then takes the form 

cp (4 + xcp ii, + 0 --7--- - t) TJ 0) = g” 0) + a)* 0) on r (2.21) 

g* 0) = f 0) on rl, g* 0) =T 0) on 72 (2.22) 
-- 

@* it) = rP 0) -5 0) + X IT ;i71 -_I + (t - t) 19’ (t) - rp’ (31 on 72 

CD* (t) = 0 on rt (2.233 

In place of (2.9) and (2.10) we will have respectively 

!l = 
A,* =m s (9* (t) t+lat (n = 0, Ifr 1, . . .) 

0 

w 00 

a),* (t) = (& - aI) t + -jj (ah - a&) tk - yJ sz,* ia; xl ck 
k=O k=o 

(2.24) 

(2.25) 

(2.26) 

We have, furthermore, 

k=o 
tn > 0) 

k=o 
(n < 0) 

On the basis of these formulas it is now possible to obtain in a similar 
manner as before an infinite system of linear equations for determining the 
unknowns ct . In contrast to the preceding, here we need the whole syatem- 
of equations obtained by equating coefficients for all the various powers of 
t . After elementary reductions this system may be written in the form 

Re {(I g x) a0 + 2~22) = $ Im[b,n, + i 6 pk + i +&Q,* la; xl 1 $- AQ* 
k=l k=l 

Re {2a,) = f Im [jj’ 6,_,dk + i &+, s&* [a; xl +A,* 1 
k=l k=o 

(2.27) 
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03 co 

Re {(x - 1) a, + 3~2,) = ; Irn 2 8k+lak + 2’ ‘k-1 !2,* In; xl +A+* 
I 

k=o k=o 
co co 

Re {a,} = ; hl &al + x’8k_n ‘k + 2 gk+* SZ,* Ia: xl +A,* 
1 

k=o k=o 
Re {(n + 2) a,+2 - (n - x) a,} = (n > 2) 

In these equalities A,* (n=O, f 1 I - - -1 denote the Fourier coefficients 
of the function g* (t);A,* are prescribed real numbers. The equalities (2.27) 
are an Infinite system of real equations for the real and Imaginary parts of 

uk (k = 0, I,...). We set ak = ok' + i&' and make the substitution 

a0 
j- - a,, PO’ = n&, na,’ = a,, np,’ = np, 

Then the system (2.27) for a,, g. takes the form 

k=l k=l 

(2.29) 

(x - 1) al + a3 = fj + Pk f 2 8,-l (Pk+2- Wk&) f Al* 
k=o k=o 

a?3 
- = 8,-, PI -+ ;’ ‘y Pk + jj dk+n (Pk+a -w kPk) +A,* n 

k=o k=o 

k=o k=o 

Ellmlnatlng from this system at (k = 1,2,...), we obtain a system for 
determining gr (k = O,l,... ), which breaks up Into two Independent systems 
In the unknowns with even and odd Indices. This system takes the form 

(n > 2) (2.30) 
k=l 

001 = - (x2 + 4x + 3), 
k=l 

O0n 
= (1 j-x)” 8, 

0 kl = ((_l)k-‘* _ 1) (I;;: ; 3 + (I + %)a (k ;;‘,kt! ‘1: - 8x - 5k) ) 

0 kn = ((-i)k_” - 1) ( 
(k. - n) [(x + k)2 + 1 - kn - 2kl - 2% (k + n) _ 

k (k2 - n2) 
(k + n)[k - n - 2 (1 - x)1 - 

(k + n)a - 4 
(n = 2, 3, . . .) 

B, = l/z (x - 1) A,* + 3A,* - A-I”, B,, = (n + 2) A,z * - (n - x) A,* - A_,* 

when 8. Is determined, may be found directly from (2.29) (a, is 
determined from the first eq%tlon of the system), and then the sought-for 
holomorphlc function m(z) is found. 
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3. A8 a numerical example +le consider the equ!.llbrium of a half-disk pressed 
against a rigid punch by a uniform pressure. Then 

f 0) = Pt (t on rJ (3.1) 

where p denotes the magnitude of the pressure. 
for U(t) we have 

In accordance with (2.6), 

g (t) = pe+ (0 <s <SC), g (if = pd” (x<@ -Sac) 

Consequently 

Rc (6 (I);\ = p cos0, Im {g fr)l, = - p 1 sin6 / (3.2) 

In the present case we have 

The truncated system (2.19), (2.20), consisting of 4N + 2 real equations, 
was numerically solved for the values N = 3, 4 and 5. For plane strain, It 
was assumed that x = 6/3 (Poisson’s ratio equal to 1/a ). 

The boundary condltlon (2.3), which In the present case, after substitu- 
tion of the corresponilng series on the left-hand slde, takes the form 

was checked at the points 6 = 8,, = ‘IenX: IN (k = 0, 1, . , ., I%). The real part 
of this equality was satisfied by the approximate solution to a high degree 
of accuracy even for N = 3 , whereas the discrepancy In its lmaglnary part 
approaches zero rather slowly, as should be expected. We cite below charac- 
teristic values of the normal stress Y, , determined from (2.17) at partlcu- 
lar points of the base of the punch (- 1 f z < 1) 
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