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In the paper [1] the problem of & half-dlsk as applied to the transverse
bending of a plate with mixed boundary conditions was considered; by intro-
ducing unknown addltional constraints on the plate the problem was reduced
to a singular integral equation of an unusual type. Herein a different
method 1s described for solving stress-snalysis problems in & half-disk,
making it possible to reduce thelr solution directly to a system of linear
algebraic equations,

l. We will carry out the proposed method for the case of an elastic half=-
disk pressed in a state of plane strain (or plane stress) against an abso=-
lutely rigid shape with & rectllinear base. It 1s assumed that the contact
of the elastic body with the rigid punch occurs along the dlameter of the
circle, whille the external forces acting on the body (and, of course, keeping
it in a state of eguilibrium), are distributed around-.the circumference of
the semicircle according %o a given law,

We take the radius of the semlcircle o be unity and locate the elastic
body and the punch in the plane z = x + {y such that the elastic medium
occuples the lower half of the clrcle with center at the origin, We will
denote the curved portion of the boundary of the body by vy, and the straight
segment by y,. Furthermore, we let § and S* be the lower and upper half-
disks, respectively, vy, the upper semlcircumference, and y the total cir-
cumference y = y;+ y, . We will use the notatlon of Muskhelishvili [2] for
the elastlc constants and the elements of the displacement and stress flelds.

Then, under the conditlons that there i1s no slip or normal displacement
on the line of contact of the bodles (*), the elastostatics problem for the
nalf-disk reduces to the search for functions oz}, ¥{z), holomorphic in
§~, which satisfy the boundary conditlons

QW O+TOH =7 onh .1
%@ (1) — 19" () —H () =0 on T (1.2)
where f(t) 1s a given function of the polnt ¢ on vy, In other words,

we must solve the fundamental mixed boundary value problem of elasticlty

*) The proposed method is in principle also applicable to other cases, pro-
vided that the coefficlent of friction maintains a constant value along the
line of contact.
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theory for a half-disk,
2., We determine the function @(;) in the upper half-disk §*, setting

() =29 () +%(2) (for zin§Y)  F()=F@) @.1),

If g 4is replaced by r in (2.1) (noting that g belongs to S-) and
both sides of the equality ard converted to their complex conz ates, then
the function ¢(z) may be determined through the function ¢ :? , which 1is
holomorphic both in §~ and §*, in the following manner:

VY (2) = up () — 29’ (2) for zin S 2.2)

It is easy to verify that the equality (1.2) on the boundary is the con-
dition for analytic continuation of the function ¢( ) through the cut Yo »
Hence, on the basis of (2.2), the problem (1.1),(1.2) reduces to a search
for a single function o(z), which is holomorphic in the unit circle, and
satisfles the following condition on the lower semicircumference

W+ +E—D P O =10 (tonry (2.3)

We extend the equality (2.3) onto the upper semicircumference by replacing
t in it by % to obtain

PO +xe@W—C—0¢ =70 (on1) (2.4)
The preceding equality may be rewritten in the form

Q@)+ @)+ (¢ — QW) =1 + (0« — 1) [p@) —o®)] + (¢ — ) [¢’?) + ¢'(1)]
and 1t 1s combined with (2.3) into the single boundary condition

PO+ O+ =D O =g+ P ony (2.5)

where -
g =1 on 1, g@=/@ oot (2.6)

Q@))=0 ony, PU=@E—D[QO—eW4+ -0 ¢ +9 @] onn

®
In solving the boundary-value problem (2.5), the usual power-seriles method
may now be applied. In the unlt circle we put

oo

9 (2) = D) a2, ¢ ()= D) kays*? @7y

k=0 k=1

Using the corresponding Fourler serles expansions, we have

g)= D 4.7, D)= Y At (t = % (2.8)

k=-—c0 =0

The quantlties 4, are known. The Fouriler coefficients A, of the unknown
function &(t) , however, are expressed by Formulas

1 ¢ — [ _
A= (=D 9D 0 W1+ ¢ =D T O +& OB ™t @9
0

For functions to be determined we shall assume conditions which are ordi-
narily specified in the formulation of similar nonregular problems. These
conditions are dictated mostly by physlical consideratlions and are sufficient
for confirming the uniqueness of the solution within the scope of ordinary
analysis. We shall assume that the displacement fleld is ccntinuous 1n the
closed region, and that the stress components are continuous up to the bound-
aries, with the exception of Z =+ 1 , at which polnts we allow singulari-
ties of order less than unity (ef., for example, [ 3], Sections 113-115).
Under these conditions we can assert that the derivatives ¢’(z) and o”(z)
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are contlnuous in any part of the closed region which does not contain the
points 2z = 1+ 1 , and that near these points the following estimates are

valid:
19" () [<Clz4+1[" (0 <a<1,C = const)
The quantity in the braces under the integral is formed on the basis of
the expansion (2.7). We obtain (2.10)

=D ) —¢ Ol + ¢ — DO +7 =)  layxl ¢F — %) a1t — )

k=1
Q lain) = — [z — Day -+ (k 4 2) a,y — kay) (2.11)
Making use of (2.9), we have
Ao = D) e @ las %] (2.12)

k=1

1 _ o
AR =7 (sgn n) {a; -+ Qm{ la; 1} + 2 a&lgk CHES (n=+41 2.13)

k=2
1 (o8]
A, = 5} (sgn n) Q‘n| [a; %] + Qa1 Z’aanh fa; %] (n=+2,+3,...) (2.14)
k=1
where
_‘1 k-n — _— k+n — A
aknﬂgL[( ) 1+< 1) 1] (& 1,2,...
$i43 kE—n k-+n n=0, 41, +2,..

The comma on the summation sign indicates that the value x = |n| is omit-
ted in the summation.

We form the left side of the equality {2.5) with the help of the series
{2.7), obtaining _ -
POIHp )+ (-9 (=
(e o]

o0
= (1 %) ag+ 208 + af + D)y~ D Q lain -t 1] 7F (2.15)
ES ) k=1

The series (2.15) and (2.8) are now introduced into the boundary condi-
tions (2.5). Equating the coefficlents of ¢* {n = 0, 1, 2,...) we obtain
in consecutive order , using {2.12) to (2.14)

o
4% a0+252=z‘10+2 o Ry las %]

k=1
1 - 1 -
o ey = Ay + 5 Qe n] 4 D) ag, @ o5 %] (2.16)
=3

- - 1 S
a, = A, + 0,4 + 7 Q, {a; %] 4~ E o, G, la; %] n>2)
k=1
The Fourier coefficlents of the function g(t) are connected by equalities
A4,=A., (n =1, 2,...), as 1s clear from the definition (2.6) of ¢(t).
For this reason equating coefficients of negative powers of ¢ in (2.5)
does not yleld new equations (different from {2.16)),

The infinite system of linear equations {2.16) is therefore a complete
system of equations for determining the unknown coefficlents of the expan-
sion (2.7). After the solution g, (k¥ = O, 1, ...} of thils system is found,
the function g{z) will give the solution of the problem, provided the cor-
responding series are uniformly convergent.

Having found {z) in the circle, we obtain the function y(z) from(2.2),
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after which all of the stresses and displacements may be found 1n the usual
manner. In particular, for the stress ¥, defined by the Kolosov-Muskheli-

shvili formula , S N —
Y, = Re{9' (2) + ¢ (2) + 20" (z) + ¥ (2)}
we have from (2.2) -
Y, = Re {¢' (2) + %' (2) + (z — 2) 9" (2)}
Ori the cut vy, this expression takes the form

00
Yy = Re {¢' () + %’ (2) } = Re D) (1 + %) ka,a*™ (— 1 <z<<1) 24D
k=1
Introducing in (2,16) the new unknowns p, deflned by the equalities
bo= G s by= kOy (x =1, 2, ...) and writing the system of equations in ex-
panded form, we obtain

_ 2 & 1 ®w—1 — _
(1 4% b= —b2 + R{'Z o5k — 112k — 1bzk--1 - boppy — by | o
k=1
o0
1 4% - — - 4k n—1
S T b1 = a1 = by + 7 X I 1)2{ 2k bar
k=1

+boig — 521:] + 24gn

i 4 n - = 4 5
5n Van =byy —bgnse + qidnz—1 T+

2 o 4k — 2 n—1 B, -
T @ Z (2k — 1)2 — 4n? [Zk— 1 b2k-1 + bgsn 921;_1} +24,,
k=1

n=1,2...) (2:18)

Here and in the following, the first term '51 on the right-hand side of
the second equallty for n =1 1s to be omitted. Not dwelling on the inves-
tigation of the system of equations (2.18), we 1limit ourselves to one hint
regarding lts approximate solution. For the approximate solution we use the
truncated system of linear equations

N
— 2 1 x — 1 - -
(A +%) b= — b2+ Z 5% — 1 [Zk 1 bok-1 T boras — bk ]+ Ao
k=1
{4+x 2 N 4k % — 1
o — 1 a1 = Vpny — gy + i 2 4k — (2n — 1)2[ 5% Pat+
k=1

+ bgray — byl - 245,

- N
. —2:% bon = — bgnia + bgn + ,%/I,{zb%'{‘{‘% Z m—f&'i—w X
‘1 ) _ k=1
X [—k—_T bor-1 + bops1 — bup1 ] 4-24,, (n=1412,...,N) 2.19)
Moreover, we set
bpyg —bp =0 for m=2N —1,2N,. .. (2.20)

Then considering Equations (2.19) and (2.20) together, we have a system
of 2F¥ + 1 1linear equatlions in the first 2¥ + 1 unknowns p,, b, ,... by,
We will take the solution of this system to be an approximate solution of
the infinite system (2.18).
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Note . The function g(t) defined by the equality (2.6) will not be

a regular function on the circumference of the disk even for the simplest
loads. In the case of & uniform normal pressure on vy,, for example, the
derivatives of ¢(¢) will have discontinuities of the first order at the
points ¢ =1 1 . Consequently, the Fourler series for the function ¢(¢)
will as a rule converge slowly, hence in order to obtain a satisfactory
numerical solution it would be necessary to retain a large number of equa-
tions in the truncated system (2.19).

On t§e other gand, in all cases of practical interest, the function ()
may be “smoothed” beforehand by considering on vy, not the equality (2.&3,
but the equality obtained from it by taking the complex conjugate. Then a
smooth function g(t) will be obtained, but in return the infinite system
of equatlions obtalned in place of (2.163 will have & more complicated struc-
ture. Such a modification of the boundary conditions is clearly equivalent
to a certain transformation of the system (2.16). Such a transformation may
sometimes prove to be feasible.

The boundary value problem (2.5) then takes the form

@) +xp () + (t—D¢ () =g* 1) +- D* (Hon 7 (2.21)
gW=1f@ on 1y g =7 on 1 (2.22)
Q* () =00 —oW+%leD -0+ —D[ ®—0¢ @] on 1
O* (=0 on 1, (2.23)
In place of {(2.9) and (2.10) we will have respectively
A* — § O* (1) T tde (n=0, 41 ) (2.24)
=y R .
0
D () = (@ — a) t 4 ) (g, —ap) tF — D) Q¥ [ayu] ™" (2.25)
k=0 k=0
Q. las ]l = (k + 2) (agy9 — Ggiq) — K (2 — ap) — %(ay — ap) (2.26)

We have, furthermore,

1 i 1 1 >
t-n- —
RTS[Z lhz"] At =D+ DV 8y oy (n>0)

0 k=0 Je==0)

11': e} 1 00,
[ rta=a, - 64 <o

0 k=0 =0
10 i28, J/n  (n=1) — 1) —
—.andz:{ n-1 O et
) 1 (n=1) v v

0

On the basis of these formulas it is now possible to obtain in a simllar
manner as before an infinite system of linear equations for determining the
unknowns g, . In contrast to the preceding, here we need the whole system.
of equations obtained by equating coefficlents for all the variocus powers of
t . After elementary reductions this system may be written in the form

1 [o o] [+ ]
Re {(1 4 %) ag 4 2a2} = n Im[61a1 + Z dya, -+ Z 8, Q,* la; %]] +- Ag*

k=1 =]

1 oo’ <0
Re {2,} = 7-Im {2 6,‘,1%-;—2 8y 2t [a;xl]+A1’* 2.27)
K==} k=0
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3 e (2.27)
Re {(x — 1) a, -+ 3a,} = % Im [Z Spi1ay + Z Oy Qp* la; x]:l +A* cont.
k=0 k—o
1
Re {e,} = = Im[n1a1+26kn et 3] un 04 lai ] 4 4,2
=0 k=0
Re {(n + 2) apyy — (0 — %) a} = (n>2)

1
=7 lm[ n+1a1 + 2 Bpin apt Z 8pn Q" la; “]] + A *
k=0
In these equalities An (n=0,41,.. .) denote the Fourler coefficients
of the function g* (1); A,* are prescribed real numbers. The equalities (2.27)

are an infinite system f real equations for the real and imaginary parts of
a, (k=0,1,...). We set ap =a,’ + ‘Bh and make the substitution

o) =ag, B =aBy, na,’=a, B =nB, (2.28)
Then the system (2.27) for q,, B, takes the form

006 o0
(4% 0+ 0= —28 + O B, + D 8, Bryp— 048y + Ac*

k=1 k=1
© 5 ,
20, = 2 Tl By + 2 Orsy Breg— @4By) + A* (“’v =1+ 3‘\7) (2.29)
k=0 k=0

0 — 1) oy + a5 = Z ",;'1 By + ) 8y (Brap— 04By) + A_,*

k—-o k=0
a, ©
e Bt ) 5 B D) Bhan Brug— 048y +4,*
’C—O =0
Uy —0_@, = n+IBI+ Z k+n B, + Z’ 8 n (Brig — @By) +-A_* (n>2)
k=0 k=0

Eliminating from this system ¢, (% = 1,2,...), we obtain a system for
determining 8, {(x = 0,1,...), which breaks up into two Independent systems
in the unknowns with even and odd indices. This system takes the form

0obo + D) 0By =B1, 0y Bo+ ) 048, =B, (2>2) (230

k=1 k=1
o= — 02 F a3, 0= 4n,
> Gk 43 +3 (1 4+%2(k —1) 4 k(5 — 8% — 5k)
‘Dk1=((—1)k1—1)( E(k+3) 2k(k:-—— 1) )
k— B)® 41 — kn — 2k] — 2x (k
b = (e — (B [ B — 2 =)
(k+n)[k—n—2(1—x)] _
(k+n)2—4 ) (n=2,3,...)
By=1s(x — 1) A* 4 34% — A*, = (2 At — (n— ) A, — A

When g, 1is determined, q, may be found directly from (2.29) (g, is
determined from the first equation of the system), and then the sought for
holomorphic function {(z) 1s found.
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3. As a numerical example we consider the equilibrium of a half-disk pressed
against a rigid punch by a uniform pressure. Then

f() = pt (t on T1y) (3.1)

where p denotes the magnitude of the pressure. In accordance with {2.6),
for ¢(t) we have

g () =p™® (0D <), g ()= pe® @< < 2m)
Consequently
Re {g ()} = peos?, Im {g ()} = — p|sin® | (3.2)

In the present case we have
4 2 p
A, = 5 Agpy =0 (n2=2), Ay, = Pl (3.3)

The truncated system (2.19), (2.20), consisting of 4¥ + 2 real equations,
was numerically solved for the values ¥ = 3, 4 and 5. For plane strain, it
was assumed that x =6/, (Polsson's ratio equal to 1/,).

The boundary condition (2.3), which in the present case, after substitu-
tion of the corresponding series on the left-hand side, takes the form

o0 o0
) . b, . " L .
(1 d2) by - bz 4 by + D) T (7 by + bk+2—bk) €ike = pe™

k=1 k=1
0 <Y <m) (3.4
was checked at the points =0, =Ytk /N (k=10,1,...,N). The real part

of this equality was satisfled by the approximate solutlon to a high degree
of accuracy even for ¥ = 3 , whereas the discrepancy in its imaglnary rart
approaches zero rather slowly, as should be expected., We cite below charac~-
teristic values of the normal stress ¥, , determined from (2.17) at particu-
lar points of the base of the punch (—1 <z <)

max ¥, = Y| == 1,1591p, minY, = Yy?x::ii = 0.8376p (3.5)

X=={
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